3.1333 \(\int \frac {\sin (c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=80 \[ -\frac {a^2 \log (a+b \sin (c+d x))}{b d \left (a^2-b^2\right )}-\frac {\log (1-\sin (c+d x))}{2 d (a+b)}+\frac {\log (\sin (c+d x)+1)}{2 d (a-b)} \]

[Out]

-1/2*ln(1-sin(d*x+c))/(a+b)/d+1/2*ln(1+sin(d*x+c))/(a-b)/d-a^2*ln(a+b*sin(d*x+c))/b/(a^2-b^2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2837, 12, 1629} \[ -\frac {a^2 \log (a+b \sin (c+d x))}{b d \left (a^2-b^2\right )}-\frac {\log (1-\sin (c+d x))}{2 d (a+b)}+\frac {\log (\sin (c+d x)+1)}{2 d (a-b)} \]

Antiderivative was successfully verified.

[In]

Int[(Sin[c + d*x]*Tan[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

-Log[1 - Sin[c + d*x]]/(2*(a + b)*d) + Log[1 + Sin[c + d*x]]/(2*(a - b)*d) - (a^2*Log[a + b*Sin[c + d*x]])/(b*
(a^2 - b^2)*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1629

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*
Pq*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 2837

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n*(b^2 - x^2)^((p - 1)/2), x], x
, b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sin (c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx &=\frac {b \operatorname {Subst}\left (\int \frac {x^2}{b^2 (a+x) \left (b^2-x^2\right )} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{(a+x) \left (b^2-x^2\right )} \, dx,x,b \sin (c+d x)\right )}{b d}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {b}{2 (a+b) (b-x)}-\frac {a^2}{(a-b) (a+b) (a+x)}+\frac {b}{2 (a-b) (b+x)}\right ) \, dx,x,b \sin (c+d x)\right )}{b d}\\ &=-\frac {\log (1-\sin (c+d x))}{2 (a+b) d}+\frac {\log (1+\sin (c+d x))}{2 (a-b) d}-\frac {a^2 \log (a+b \sin (c+d x))}{b \left (a^2-b^2\right ) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 72, normalized size = 0.90 \[ \frac {-2 a^2 \log (a+b \sin (c+d x))-b (a-b) \log (1-\sin (c+d x))+b (a+b) \log (\sin (c+d x)+1)}{2 b d (a-b) (a+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sin[c + d*x]*Tan[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

(-((a - b)*b*Log[1 - Sin[c + d*x]]) + b*(a + b)*Log[1 + Sin[c + d*x]] - 2*a^2*Log[a + b*Sin[c + d*x]])/(2*(a -
 b)*b*(a + b)*d)

________________________________________________________________________________________

fricas [A]  time = 1.05, size = 74, normalized size = 0.92 \[ -\frac {2 \, a^{2} \log \left (b \sin \left (d x + c\right ) + a\right ) - {\left (a b + b^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a b - b^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{2 \, {\left (a^{2} b - b^{3}\right )} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*sin(d*x+c)^2/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(2*a^2*log(b*sin(d*x + c) + a) - (a*b + b^2)*log(sin(d*x + c) + 1) + (a*b - b^2)*log(-sin(d*x + c) + 1))/
((a^2*b - b^3)*d)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 71, normalized size = 0.89 \[ -\frac {\frac {2 \, a^{2} \log \left ({\left | b \sin \left (d x + c\right ) + a \right |}\right )}{a^{2} b - b^{3}} - \frac {\log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a - b} + \frac {\log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{a + b}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*sin(d*x+c)^2/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/2*(2*a^2*log(abs(b*sin(d*x + c) + a))/(a^2*b - b^3) - log(abs(sin(d*x + c) + 1))/(a - b) + log(abs(sin(d*x
+ c) - 1))/(a + b))/d

________________________________________________________________________________________

maple [A]  time = 0.36, size = 81, normalized size = 1.01 \[ -\frac {\ln \left (\sin \left (d x +c \right )-1\right )}{d \left (2 a +2 b \right )}-\frac {a^{2} \ln \left (a +b \sin \left (d x +c \right )\right )}{d \left (a +b \right ) \left (a -b \right ) b}+\frac {\ln \left (1+\sin \left (d x +c \right )\right )}{d \left (2 a -2 b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*sin(d*x+c)^2/(a+b*sin(d*x+c)),x)

[Out]

-1/d/(2*a+2*b)*ln(sin(d*x+c)-1)-1/d*a^2/(a+b)/(a-b)/b*ln(a+b*sin(d*x+c))+1/d/(2*a-2*b)*ln(1+sin(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 68, normalized size = 0.85 \[ -\frac {\frac {2 \, a^{2} \log \left (b \sin \left (d x + c\right ) + a\right )}{a^{2} b - b^{3}} - \frac {\log \left (\sin \left (d x + c\right ) + 1\right )}{a - b} + \frac {\log \left (\sin \left (d x + c\right ) - 1\right )}{a + b}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*sin(d*x+c)^2/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(2*a^2*log(b*sin(d*x + c) + a)/(a^2*b - b^3) - log(sin(d*x + c) + 1)/(a - b) + log(sin(d*x + c) - 1)/(a +
 b))/d

________________________________________________________________________________________

mupad [B]  time = 11.94, size = 117, normalized size = 1.46 \[ \frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{d\,\left (a-b\right )}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{d\,\left (a+b\right )}+\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{b\,d}-\frac {a^2\,\ln \left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}{b\,d\,\left (a^2-b^2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)^2/(cos(c + d*x)*(a + b*sin(c + d*x))),x)

[Out]

log(tan(c/2 + (d*x)/2) + 1)/(d*(a - b)) - log(tan(c/2 + (d*x)/2) - 1)/(d*(a + b)) + log(tan(c/2 + (d*x)/2)^2 +
 1)/(b*d) - (a^2*log(a + 2*b*tan(c/2 + (d*x)/2) + a*tan(c/2 + (d*x)/2)^2))/(b*d*(a^2 - b^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*sin(d*x+c)**2/(a+b*sin(d*x+c)),x)

[Out]

Integral(sin(c + d*x)**2*sec(c + d*x)/(a + b*sin(c + d*x)), x)

________________________________________________________________________________________